|
@@ -0,0 +1,517 @@
|
|
|
+// MIT License
|
|
|
+//
|
|
|
+// Copyright (c) 2023 Ronald van Wijnen
|
|
|
+//
|
|
|
+// Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
+// copy of this software and associated documentation files (the "Software"),
|
|
|
+// to deal in the Software without restriction, including without limitation
|
|
|
+// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
+// and/or sell copies of the Software, and to permit persons to whom the
|
|
|
+// Software is furnished to do so, subject to the following conditions:
|
|
|
+//
|
|
|
+// The above copyright notice and this permission notice shall be included in
|
|
|
+// all copies or substantial portions of the Software.
|
|
|
+//
|
|
|
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
|
+// DEALINGS IN THE SOFTWARE.
|
|
|
+
|
|
|
+(function (global, factory) {
|
|
|
+ typeof exports === 'object' && typeof module !== 'undefined'
|
|
|
+ ? factory(exports)
|
|
|
+ : typeof define === 'function' && define.amd
|
|
|
+ ? define(['exports'], factory)
|
|
|
+ : ((global = global || self), factory((global.spectral = {})));
|
|
|
+})(this, function (exports) {
|
|
|
+ ('use strict');
|
|
|
+
|
|
|
+ const RGB = 0;
|
|
|
+ const RGBA = 1;
|
|
|
+ const HEX = 2;
|
|
|
+ const HEXA = 3;
|
|
|
+
|
|
|
+ const SIZE = 38;
|
|
|
+ const GAMMA = 2.4;
|
|
|
+ const EPSILON = 0.00000001;
|
|
|
+
|
|
|
+ function linear_to_concentration(l1, l2, t) {
|
|
|
+ let t1 = l1 * (1 - t) ** 2;
|
|
|
+ let t2 = l2 * t ** 2;
|
|
|
+
|
|
|
+ return t2 / (t1 + t2);
|
|
|
+ }
|
|
|
+
|
|
|
+ function mix(color1, color2, t, returnFormat) {
|
|
|
+ color1 = unpack(color1);
|
|
|
+ color2 = unpack(color2);
|
|
|
+
|
|
|
+ let lrgb1 = srgb_to_linear(color1);
|
|
|
+ let lrgb2 = srgb_to_linear(color2);
|
|
|
+
|
|
|
+ let R1 = linear_to_reflectance(lrgb1);
|
|
|
+ let R2 = linear_to_reflectance(lrgb2);
|
|
|
+
|
|
|
+ let l1 = dotproduct(R1, CIE_CMF_Y);
|
|
|
+ let l2 = dotproduct(R2, CIE_CMF_Y);
|
|
|
+
|
|
|
+ t = linear_to_concentration(l1, l2, t);
|
|
|
+
|
|
|
+ const R = new Array(SIZE);
|
|
|
+
|
|
|
+ for (let i = 0; i < SIZE; i++) {
|
|
|
+ let KS = (1 - t) * ((1 - R1[i]) ** 2 / (2 * R1[i])) + t * ((1 - R2[i]) ** 2 / (2 * R2[i]));
|
|
|
+ let KM = 1 + KS - Math.sqrt(KS ** 2 + 2 * KS);
|
|
|
+
|
|
|
+ //Saunderson correction
|
|
|
+ // let S = ((1.0 - K1) * (1.0 - K2) * KM) / (1.0 - K2 * KM);
|
|
|
+
|
|
|
+ R[i] = KM;
|
|
|
+ }
|
|
|
+
|
|
|
+ let rgb = xyz_to_srgb(reflectance_to_xyz(R));
|
|
|
+
|
|
|
+ rgb.push(lerp(color1[3], color2[3], t));
|
|
|
+
|
|
|
+ return pack(rgb, returnFormat);
|
|
|
+ }
|
|
|
+
|
|
|
+ function palette(color1, color2, size, returnFormat) {
|
|
|
+ let g = [];
|
|
|
+
|
|
|
+ for (let i = 0; i < size; i++) {
|
|
|
+ g.push(mix(color1, color2, i / (size - 1), returnFormat));
|
|
|
+ }
|
|
|
+
|
|
|
+ return g;
|
|
|
+ }
|
|
|
+
|
|
|
+ function uncompand(x) {
|
|
|
+ return x < 0.04045 ? x / 12.92 : ((x + 0.055) / 1.055) ** GAMMA;
|
|
|
+ }
|
|
|
+
|
|
|
+ function compand(x) {
|
|
|
+ return x < 0.0031308 ? x * 12.92 : 1.055 * x ** (1.0 / GAMMA) - 0.055;
|
|
|
+ }
|
|
|
+
|
|
|
+ function srgb_to_linear(srgb) {
|
|
|
+ let r = uncompand(srgb[0] / 255.0);
|
|
|
+ let g = uncompand(srgb[1] / 255.0);
|
|
|
+ let b = uncompand(srgb[2] / 255.0);
|
|
|
+
|
|
|
+ return [r, g, b];
|
|
|
+ }
|
|
|
+
|
|
|
+ function linear_to_srgb(lrgb) {
|
|
|
+ let r = compand(lrgb[0]);
|
|
|
+ let g = compand(lrgb[1]);
|
|
|
+ let b = compand(lrgb[2]);
|
|
|
+
|
|
|
+ return [Math.round(clamp(r, 0, 1) * 255), Math.round(clamp(g, 0, 1) * 255), Math.round(clamp(b, 0, 1) * 255)];
|
|
|
+ }
|
|
|
+
|
|
|
+ function xyz_to_srgb(xyz) {
|
|
|
+ let r = dotproduct(XYZ_RGB[0], xyz);
|
|
|
+ let g = dotproduct(XYZ_RGB[1], xyz);
|
|
|
+ let b = dotproduct(XYZ_RGB[2], xyz);
|
|
|
+
|
|
|
+ return linear_to_srgb([r, g, b]);
|
|
|
+ }
|
|
|
+
|
|
|
+ function reflectance_to_xyz(R) {
|
|
|
+ let x = dotproduct(R, CIE_CMF_X);
|
|
|
+ let y = dotproduct(R, CIE_CMF_Y);
|
|
|
+ let z = dotproduct(R, CIE_CMF_Z);
|
|
|
+
|
|
|
+ return [x, y, z];
|
|
|
+ }
|
|
|
+
|
|
|
+ function spectral_upsampling(lrgb) {
|
|
|
+ let w = Math.min(Math.min(lrgb[0], lrgb[1]), lrgb[2]);
|
|
|
+
|
|
|
+ lrgb = [lrgb[0] - w, lrgb[1] - w, lrgb[2] - w];
|
|
|
+
|
|
|
+ let c = Math.min(lrgb[1], lrgb[2]);
|
|
|
+ let m = Math.min(lrgb[0], lrgb[2]);
|
|
|
+ let y = Math.min(lrgb[0], lrgb[1]);
|
|
|
+ let r = Math.max(0, Math.min(lrgb[0] - lrgb[2], lrgb[0] - lrgb[1]));
|
|
|
+ let g = Math.max(0, Math.min(lrgb[1] - lrgb[2], lrgb[1] - lrgb[0]));
|
|
|
+ let b = Math.max(0, Math.min(lrgb[2] - lrgb[1], lrgb[2] - lrgb[0]));
|
|
|
+
|
|
|
+ return [w, c, m, y, r, g, b];
|
|
|
+ }
|
|
|
+
|
|
|
+ function linear_to_reflectance(lrgb) {
|
|
|
+ let weights = spectral_upsampling(lrgb);
|
|
|
+
|
|
|
+ const R = new Array(SIZE);
|
|
|
+
|
|
|
+ for (let i = 0; i < SIZE; i++) {
|
|
|
+ R[i] = Math.max(
|
|
|
+ EPSILON,
|
|
|
+ weights[0] + weights[1] * SPD_C[i] + weights[2] * SPD_M[i] + weights[3] * SPD_Y[i] + weights[4] * SPD_R[i] + weights[5] * SPD_G[i] + weights[6] * SPD_B[i]
|
|
|
+ );
|
|
|
+ }
|
|
|
+
|
|
|
+ return R;
|
|
|
+ }
|
|
|
+
|
|
|
+ function lerp(a, b, alpha) {
|
|
|
+ return a + alpha * (b - a);
|
|
|
+ }
|
|
|
+
|
|
|
+ function clamp(value, min, max) {
|
|
|
+ return Math.min(Math.max(value, min), max);
|
|
|
+ }
|
|
|
+
|
|
|
+ function dotproduct(a, b) {
|
|
|
+ return a.map((x, i) => a[i] * b[i]).reduce((m, n) => m + n);
|
|
|
+ }
|
|
|
+
|
|
|
+ function glsl_color(c) {
|
|
|
+ let rgba = unpack(c);
|
|
|
+
|
|
|
+ return [rgba[0] / 255, rgba[1] / 255, rgba[2] / 255, rgba[3] > 1 ? rgba[3] / 255 : rgba[3]];
|
|
|
+ }
|
|
|
+
|
|
|
+ function unpack(color) {
|
|
|
+ if (Array.isArray(color)) {
|
|
|
+ const [r, g, b, a = 1] = color;
|
|
|
+
|
|
|
+ return [r, g, b, a];
|
|
|
+ }
|
|
|
+
|
|
|
+ if (color.startsWith('rgb')) {
|
|
|
+ color = color
|
|
|
+ .slice(color.indexOf('(') + 1, -1)
|
|
|
+ .split(',')
|
|
|
+ .map((value) => (value.trim().endsWith('%') ? Math.round(parseFloat(value.trim()) * 2.55) : Number(value.trim())));
|
|
|
+
|
|
|
+ const [r, g, b, a = 1] = color;
|
|
|
+
|
|
|
+ return [r, g, b, a];
|
|
|
+ }
|
|
|
+
|
|
|
+ if (color.startsWith('#')) {
|
|
|
+ if (color.length === 4 || color.length === 5) {
|
|
|
+ color = color
|
|
|
+ .split('')
|
|
|
+ .slice(1)
|
|
|
+ .map((value) => value + value)
|
|
|
+ .join('');
|
|
|
+ } else {
|
|
|
+ color = color.slice(1);
|
|
|
+ }
|
|
|
+
|
|
|
+ color = color.match(/.{1,2}/g).map((value) => parseInt(value, 16));
|
|
|
+
|
|
|
+ const [r, g, b, a = 1] = color.length === 3 ? [...color, 1] : color;
|
|
|
+
|
|
|
+ return [r, g, b, a];
|
|
|
+ }
|
|
|
+
|
|
|
+ return [0, 0, 0, 1];
|
|
|
+ }
|
|
|
+
|
|
|
+ function pack(srgb, returnFormat) {
|
|
|
+ let r = srgb[0];
|
|
|
+ let g = srgb[1];
|
|
|
+ let b = srgb[2];
|
|
|
+ let a = srgb[3];
|
|
|
+
|
|
|
+ if (returnFormat === RGB || returnFormat === RGBA) {
|
|
|
+ return `rgb${returnFormat === RGBA ? 'a' : ''}(${r}, ${g}, ${b}${returnFormat === RGBA ? ', ' + a : ''})`;
|
|
|
+ }
|
|
|
+
|
|
|
+ r = r.toString(16);
|
|
|
+ g = g.toString(16);
|
|
|
+ b = b.toString(16);
|
|
|
+ a = (a > 1 ? a : Math.round(clamp(a, 0, 1) * 255)).toString(16);
|
|
|
+
|
|
|
+ if (r.length == 1) r = '0' + r;
|
|
|
+ if (g.length == 1) g = '0' + g;
|
|
|
+ if (b.length == 1) b = '0' + b;
|
|
|
+ if (a.length == 1) a = '0' + a;
|
|
|
+
|
|
|
+ return `#${r}${g}${b}${returnFormat === HEXA ? a : ''}`;
|
|
|
+ }
|
|
|
+
|
|
|
+ // K1 and K2 are used for the Saunderson correction which is used for how the color looks behind a refractive
|
|
|
+ // surface like glass
|
|
|
+ //
|
|
|
+ // 1 is used for a vacuum, no surface
|
|
|
+ //
|
|
|
+ // Refractive Index
|
|
|
+ //
|
|
|
+ // https://en.wikipedia.org/wiki/Refractive_index
|
|
|
+ // https://en.wikipedia.org/wiki/List_of_refractive_indices
|
|
|
+ //
|
|
|
+ // Glass = 1.5
|
|
|
+ // Vacuum = 1
|
|
|
+
|
|
|
+ const RI = 1.0;
|
|
|
+ const K1 = (RI - 1) ** 2 / (RI + 1) ** 2;
|
|
|
+
|
|
|
+ // 0 = neutral, - = lighten, + = darken
|
|
|
+ const K2 = 0;
|
|
|
+
|
|
|
+ const SPD_C = [
|
|
|
+ 0.96853629, 0.96855103, 0.96859338, 0.96877345, 0.96942204, 0.97143709, 0.97541862, 0.98074186, 0.98580992, 0.98971194, 0.99238027, 0.99409844, 0.995172, 0.99576545,
|
|
|
+ 0.99593552, 0.99564041, 0.99464769, 0.99229579, 0.98638762, 0.96829712, 0.89228016, 0.53740239, 0.15360445, 0.05705719, 0.03126539, 0.02205445, 0.01802271, 0.0161346,
|
|
|
+ 0.01520947, 0.01475977, 0.01454263, 0.01444459, 0.01439897, 0.0143762, 0.01436343, 0.01435687, 0.0143537, 0.01435408,
|
|
|
+ ];
|
|
|
+
|
|
|
+ const SPD_M = [
|
|
|
+ 0.51567122, 0.5401552, 0.62645502, 0.75595012, 0.92826996, 0.97223624, 0.98616174, 0.98955255, 0.98676237, 0.97312575, 0.91944277, 0.32564851, 0.13820628, 0.05015143,
|
|
|
+ 0.02912336, 0.02421691, 0.02660696, 0.03407586, 0.04835936, 0.0001172, 0.00008554, 0.85267882, 0.93188793, 0.94810268, 0.94200977, 0.91478045, 0.87065445, 0.78827548,
|
|
|
+ 0.65738359, 0.59909403, 0.56817268, 0.54031997, 0.52110241, 0.51041094, 0.50526577, 0.5025508, 0.50126452, 0.50083021,
|
|
|
+ ];
|
|
|
+
|
|
|
+ const SPD_Y = [
|
|
|
+ 0.02055257, 0.02059936, 0.02062723, 0.02073387, 0.02114202, 0.02233154, 0.02556857, 0.03330189, 0.05185294, 0.10087639, 0.24000413, 0.53589066, 0.79874659, 0.91186529,
|
|
|
+ 0.95399623, 0.97137099, 0.97939505, 0.98345207, 0.98553736, 0.98648905, 0.98674535, 0.98657555, 0.98611877, 0.98559942, 0.98507063, 0.98460039, 0.98425301, 0.98403909,
|
|
|
+ 0.98388535, 0.98376116, 0.98368246, 0.98365023, 0.98361309, 0.98357259, 0.98353856, 0.98351247, 0.98350101, 0.98350852,
|
|
|
+ ];
|
|
|
+
|
|
|
+ const SPD_R = [
|
|
|
+ 0.03147571, 0.03146636, 0.03140624, 0.03119611, 0.03053888, 0.02856855, 0.02459485, 0.0192952, 0.01423112, 0.01033111, 0.00765876, 0.00593693, 0.00485616, 0.00426186,
|
|
|
+ 0.00409039, 0.00438375, 0.00537525, 0.00772962, 0.0136612, 0.03181352, 0.10791525, 0.46249516, 0.84604333, 0.94275572, 0.96860996, 0.97783966, 0.98187757, 0.98377315,
|
|
|
+ 0.98470202, 0.98515481, 0.98537114, 0.98546685, 0.98550011, 0.98551031, 0.98550741, 0.98551323, 0.98551563, 0.98551547,
|
|
|
+ ];
|
|
|
+
|
|
|
+ const SPD_G = [
|
|
|
+ 0.49108579, 0.46944057, 0.4016578, 0.2449042, 0.0682688, 0.02732883, 0.013606, 0.01000187, 0.01284127, 0.02636635, 0.07058713, 0.70421692, 0.85473994, 0.95081565, 0.9717037,
|
|
|
+ 0.97651888, 0.97429245, 0.97012917, 0.9425863, 0.99989207, 0.99989891, 0.13823139, 0.06968113, 0.05628787, 0.06111561, 0.08987709, 0.13656016, 0.22169624, 0.32176956,
|
|
|
+ 0.36157329, 0.4836192, 0.46488579, 0.47440306, 0.4857699, 0.49267971, 0.49625685, 0.49807754, 0.49889859,
|
|
|
+ ];
|
|
|
+
|
|
|
+ const SPD_B = [
|
|
|
+ 0.97901834, 0.97901649, 0.97901118, 0.97892146, 0.97858555, 0.97743705, 0.97428075, 0.96663223, 0.94822893, 0.89937713, 0.76070164, 0.4642044, 0.20123039, 0.08808402,
|
|
|
+ 0.04592894, 0.02860373, 0.02060067, 0.01656701, 0.01451549, 0.01357964, 0.01331243, 0.01347661, 0.01387181, 0.01435472, 0.01479836, 0.0151525, 0.01540513, 0.01557233,
|
|
|
+ 0.0156571, 0.01571025, 0.01571916, 0.01572133, 0.01572502, 0.01571717, 0.01571905, 0.01571059, 0.01569728, 0.0157002,
|
|
|
+ ];
|
|
|
+
|
|
|
+ const CIE_CMF_X = [
|
|
|
+ 0.00006469, 0.00021941, 0.00112057, 0.00376661, 0.01188055, 0.02328644, 0.03455942, 0.03722379, 0.03241838, 0.02123321, 0.01049099, 0.00329584, 0.00050704, 0.00094867,
|
|
|
+ 0.00627372, 0.01686462, 0.02868965, 0.04267481, 0.05625475, 0.0694704, 0.08305315, 0.0861261, 0.09046614, 0.08500387, 0.07090667, 0.05062889, 0.03547396, 0.02146821,
|
|
|
+ 0.01251646, 0.00680458, 0.00346457, 0.00149761, 0.0007697, 0.00040737, 0.00016901, 0.00009522, 0.00004903, 0.00002,
|
|
|
+ ];
|
|
|
+
|
|
|
+ const CIE_CMF_Y = [
|
|
|
+ 0.00000184, 0.00000621, 0.00003101, 0.00010475, 0.00035364, 0.00095147, 0.00228226, 0.00420733, 0.0066888, 0.0098884, 0.01524945, 0.02141831, 0.03342293, 0.05131001,
|
|
|
+ 0.07040208, 0.08783871, 0.09424905, 0.09795667, 0.09415219, 0.08678102, 0.07885653, 0.0635267, 0.05374142, 0.04264606, 0.03161735, 0.02088521, 0.01386011, 0.00810264,
|
|
|
+ 0.0046301, 0.00249138, 0.0012593, 0.00054165, 0.00027795, 0.00014711, 0.00006103, 0.00003439, 0.00001771, 0.00000722,
|
|
|
+ ];
|
|
|
+
|
|
|
+ const CIE_CMF_Z = [
|
|
|
+ 0.00030502, 0.00103681, 0.00531314, 0.01795439, 0.05707758, 0.11365162, 0.17335873, 0.19620658, 0.18608237, 0.13995048, 0.08917453, 0.04789621, 0.02814563, 0.01613766,
|
|
|
+ 0.0077591, 0.00429615, 0.00200551, 0.00086147, 0.00036904, 0.00019143, 0.00014956, 0.00009231, 0.00006813, 0.00002883, 0.00001577, 0.00000394, 0.00000158, 0.0, 0.0, 0.0, 0.0,
|
|
|
+ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
|
|
+ ];
|
|
|
+
|
|
|
+ const XYZ_RGB = [
|
|
|
+ [3.24306333, -1.53837619, -0.49893282],
|
|
|
+ [-0.96896309, 1.87542451, 0.04154303],
|
|
|
+ [0.05568392, -0.20417438, 1.05799454],
|
|
|
+ ];
|
|
|
+
|
|
|
+ function glsl() {
|
|
|
+ return `
|
|
|
+#ifndef SPECTRAL
|
|
|
+#define SPECTRAL
|
|
|
+
|
|
|
+const int SPECTRAL_SIZE = 38;
|
|
|
+const float SPECTRAL_GAMMA = 2.4;
|
|
|
+const float SPECTRAL_EPSILON = 0.0001;
|
|
|
+
|
|
|
+float spectral_uncompand(float x) {
|
|
|
+ return (x < 0.04045) ? x / 12.92 : pow((x + 0.055) / 1.055, SPECTRAL_GAMMA);
|
|
|
+}
|
|
|
+
|
|
|
+float spectral_compand(float x) {
|
|
|
+ return (x < 0.0031308) ? x * 12.92 : 1.055 * pow(x, 1.0 / SPECTRAL_GAMMA) - 0.055;
|
|
|
+}
|
|
|
+
|
|
|
+vec3 spectral_srgb_to_linear(vec3 srgb) {
|
|
|
+ return vec3(spectral_uncompand(srgb[0]), spectral_uncompand(srgb[1]), spectral_uncompand(srgb[2]));
|
|
|
+}
|
|
|
+
|
|
|
+vec3 spectral_linear_to_srgb(vec3 lrgb) {
|
|
|
+ return clamp(vec3(spectral_compand(lrgb[0]), spectral_compand(lrgb[1]), spectral_compand(lrgb[2])), 0.0, 1.0);
|
|
|
+}
|
|
|
+
|
|
|
+void spectral_upsampling(vec3 lrgb, out float w, out float c, out float m, out float y, out float r, out float g, out float b) {
|
|
|
+ w = min(lrgb.r, min(lrgb.g, lrgb.b));
|
|
|
+
|
|
|
+ lrgb -= w;
|
|
|
+
|
|
|
+ c = min(lrgb.g, lrgb.b);
|
|
|
+ m = min(lrgb.r, lrgb.b);
|
|
|
+ y = min(lrgb.r, lrgb.g);
|
|
|
+ r = min(max(0., lrgb.r - lrgb.b), max(0., lrgb.r - lrgb.g));
|
|
|
+ g = min(max(0., lrgb.g - lrgb.b), max(0., lrgb.g - lrgb.r));
|
|
|
+ b = min(max(0., lrgb.b - lrgb.g), max(0., lrgb.b - lrgb.r));
|
|
|
+}
|
|
|
+
|
|
|
+void spectral_linear_to_reflectance(vec3 lrgb, inout float R[SPECTRAL_SIZE]) {
|
|
|
+ float w, c, m, y, r, g, b;
|
|
|
+
|
|
|
+ spectral_upsampling(lrgb, w, c, m, y, r, g, b);
|
|
|
+
|
|
|
+ R[0] = max(SPECTRAL_EPSILON, w + c * 0.96853629 + m * 0.51567122 + y * 0.02055257 + r * 0.03147571 + g * 0.49108579 + b * 0.97901834);
|
|
|
+ R[1] = max(SPECTRAL_EPSILON, w + c * 0.96855103 + m * 0.54015520 + y * 0.02059936 + r * 0.03146636 + g * 0.46944057 + b * 0.97901649);
|
|
|
+ R[2] = max(SPECTRAL_EPSILON, w + c * 0.96859338 + m * 0.62645502 + y * 0.02062723 + r * 0.03140624 + g * 0.40165780 + b * 0.97901118);
|
|
|
+ R[3] = max(SPECTRAL_EPSILON, w + c * 0.96877345 + m * 0.75595012 + y * 0.02073387 + r * 0.03119611 + g * 0.24490420 + b * 0.97892146);
|
|
|
+ R[4] = max(SPECTRAL_EPSILON, w + c * 0.96942204 + m * 0.92826996 + y * 0.02114202 + r * 0.03053888 + g * 0.06826880 + b * 0.97858555);
|
|
|
+ R[5] = max(SPECTRAL_EPSILON, w + c * 0.97143709 + m * 0.97223624 + y * 0.02233154 + r * 0.02856855 + g * 0.02732883 + b * 0.97743705);
|
|
|
+ R[6] = max(SPECTRAL_EPSILON, w + c * 0.97541862 + m * 0.98616174 + y * 0.02556857 + r * 0.02459485 + g * 0.01360600 + b * 0.97428075);
|
|
|
+ R[7] = max(SPECTRAL_EPSILON, w + c * 0.98074186 + m * 0.98955255 + y * 0.03330189 + r * 0.01929520 + g * 0.01000187 + b * 0.96663223);
|
|
|
+ R[8] = max(SPECTRAL_EPSILON, w + c * 0.98580992 + m * 0.98676237 + y * 0.05185294 + r * 0.01423112 + g * 0.01284127 + b * 0.94822893);
|
|
|
+ R[9] = max(SPECTRAL_EPSILON, w + c * 0.98971194 + m * 0.97312575 + y * 0.10087639 + r * 0.01033111 + g * 0.02636635 + b * 0.89937713);
|
|
|
+ R[10] = max(SPECTRAL_EPSILON, w + c * 0.99238027 + m * 0.91944277 + y * 0.24000413 + r * 0.00765876 + g * 0.07058713 + b * 0.76070164);
|
|
|
+ R[11] = max(SPECTRAL_EPSILON, w + c * 0.99409844 + m * 0.32564851 + y * 0.53589066 + r * 0.00593693 + g * 0.70421692 + b * 0.46420440);
|
|
|
+ R[12] = max(SPECTRAL_EPSILON, w + c * 0.99517200 + m * 0.13820628 + y * 0.79874659 + r * 0.00485616 + g * 0.85473994 + b * 0.20123039);
|
|
|
+ R[13] = max(SPECTRAL_EPSILON, w + c * 0.99576545 + m * 0.05015143 + y * 0.91186529 + r * 0.00426186 + g * 0.95081565 + b * 0.08808402);
|
|
|
+ R[14] = max(SPECTRAL_EPSILON, w + c * 0.99593552 + m * 0.02912336 + y * 0.95399623 + r * 0.00409039 + g * 0.97170370 + b * 0.04592894);
|
|
|
+ R[15] = max(SPECTRAL_EPSILON, w + c * 0.99564041 + m * 0.02421691 + y * 0.97137099 + r * 0.00438375 + g * 0.97651888 + b * 0.02860373);
|
|
|
+ R[16] = max(SPECTRAL_EPSILON, w + c * 0.99464769 + m * 0.02660696 + y * 0.97939505 + r * 0.00537525 + g * 0.97429245 + b * 0.02060067);
|
|
|
+ R[17] = max(SPECTRAL_EPSILON, w + c * 0.99229579 + m * 0.03407586 + y * 0.98345207 + r * 0.00772962 + g * 0.97012917 + b * 0.01656701);
|
|
|
+ R[18] = max(SPECTRAL_EPSILON, w + c * 0.98638762 + m * 0.04835936 + y * 0.98553736 + r * 0.01366120 + g * 0.94258630 + b * 0.01451549);
|
|
|
+ R[19] = max(SPECTRAL_EPSILON, w + c * 0.96829712 + m * 0.00011720 + y * 0.98648905 + r * 0.03181352 + g * 0.99989207 + b * 0.01357964);
|
|
|
+ R[20] = max(SPECTRAL_EPSILON, w + c * 0.89228016 + m * 0.00008554 + y * 0.98674535 + r * 0.10791525 + g * 0.99989891 + b * 0.01331243);
|
|
|
+ R[21] = max(SPECTRAL_EPSILON, w + c * 0.53740239 + m * 0.85267882 + y * 0.98657555 + r * 0.46249516 + g * 0.13823139 + b * 0.01347661);
|
|
|
+ R[22] = max(SPECTRAL_EPSILON, w + c * 0.15360445 + m * 0.93188793 + y * 0.98611877 + r * 0.84604333 + g * 0.06968113 + b * 0.01387181);
|
|
|
+ R[23] = max(SPECTRAL_EPSILON, w + c * 0.05705719 + m * 0.94810268 + y * 0.98559942 + r * 0.94275572 + g * 0.05628787 + b * 0.01435472);
|
|
|
+ R[24] = max(SPECTRAL_EPSILON, w + c * 0.03126539 + m * 0.94200977 + y * 0.98507063 + r * 0.96860996 + g * 0.06111561 + b * 0.01479836);
|
|
|
+ R[25] = max(SPECTRAL_EPSILON, w + c * 0.02205445 + m * 0.91478045 + y * 0.98460039 + r * 0.97783966 + g * 0.08987709 + b * 0.01515250);
|
|
|
+ R[26] = max(SPECTRAL_EPSILON, w + c * 0.01802271 + m * 0.87065445 + y * 0.98425301 + r * 0.98187757 + g * 0.13656016 + b * 0.01540513);
|
|
|
+ R[27] = max(SPECTRAL_EPSILON, w + c * 0.01613460 + m * 0.78827548 + y * 0.98403909 + r * 0.98377315 + g * 0.22169624 + b * 0.01557233);
|
|
|
+ R[28] = max(SPECTRAL_EPSILON, w + c * 0.01520947 + m * 0.65738359 + y * 0.98388535 + r * 0.98470202 + g * 0.32176956 + b * 0.01565710);
|
|
|
+ R[29] = max(SPECTRAL_EPSILON, w + c * 0.01475977 + m * 0.59909403 + y * 0.98376116 + r * 0.98515481 + g * 0.36157329 + b * 0.01571025);
|
|
|
+ R[30] = max(SPECTRAL_EPSILON, w + c * 0.01454263 + m * 0.56817268 + y * 0.98368246 + r * 0.98537114 + g * 0.48361920 + b * 0.01571916);
|
|
|
+ R[31] = max(SPECTRAL_EPSILON, w + c * 0.01444459 + m * 0.54031997 + y * 0.98365023 + r * 0.98546685 + g * 0.46488579 + b * 0.01572133);
|
|
|
+ R[32] = max(SPECTRAL_EPSILON, w + c * 0.01439897 + m * 0.52110241 + y * 0.98361309 + r * 0.98550011 + g * 0.47440306 + b * 0.01572502);
|
|
|
+ R[33] = max(SPECTRAL_EPSILON, w + c * 0.01437620 + m * 0.51041094 + y * 0.98357259 + r * 0.98551031 + g * 0.48576990 + b * 0.01571717);
|
|
|
+ R[34] = max(SPECTRAL_EPSILON, w + c * 0.01436343 + m * 0.50526577 + y * 0.98353856 + r * 0.98550741 + g * 0.49267971 + b * 0.01571905);
|
|
|
+ R[35] = max(SPECTRAL_EPSILON, w + c * 0.01435687 + m * 0.50255080 + y * 0.98351247 + r * 0.98551323 + g * 0.49625685 + b * 0.01571059);
|
|
|
+ R[36] = max(SPECTRAL_EPSILON, w + c * 0.01435370 + m * 0.50126452 + y * 0.98350101 + r * 0.98551563 + g * 0.49807754 + b * 0.01569728);
|
|
|
+ R[37] = max(SPECTRAL_EPSILON, w + c * 0.01435408 + m * 0.50083021 + y * 0.98350852 + r * 0.98551547 + g * 0.49889859 + b * 0.01570020);
|
|
|
+}
|
|
|
+
|
|
|
+vec3 spectral_xyz_to_srgb(vec3 xyz) {
|
|
|
+ mat3 XYZ_RGB;
|
|
|
+
|
|
|
+ XYZ_RGB[0] = vec3( 3.24306333, -1.53837619, -0.49893282);
|
|
|
+ XYZ_RGB[1] = vec3(-0.96896309, 1.87542451, 0.04154303);
|
|
|
+ XYZ_RGB[2] = vec3( 0.05568392, -0.20417438, 1.05799454);
|
|
|
+
|
|
|
+ float r = dot(XYZ_RGB[0], xyz);
|
|
|
+ float g = dot(XYZ_RGB[1], xyz);
|
|
|
+ float b = dot(XYZ_RGB[2], xyz);
|
|
|
+
|
|
|
+ return spectral_linear_to_srgb(vec3(r, g, b));
|
|
|
+}
|
|
|
+
|
|
|
+vec3 spectral_reflectance_to_xyz(float R[SPECTRAL_SIZE]) {
|
|
|
+ vec3 xyz = vec3(0.0);
|
|
|
+
|
|
|
+ xyz += R[0] * vec3(0.00006469, 0.00000184, 0.00030502);
|
|
|
+ xyz += R[1] * vec3(0.00021941, 0.00000621, 0.00103681);
|
|
|
+ xyz += R[2] * vec3(0.00112057, 0.00003101, 0.00531314);
|
|
|
+ xyz += R[3] * vec3(0.00376661, 0.00010475, 0.01795439);
|
|
|
+ xyz += R[4] * vec3(0.01188055, 0.00035364, 0.05707758);
|
|
|
+ xyz += R[5] * vec3(0.02328644, 0.00095147, 0.11365162);
|
|
|
+ xyz += R[6] * vec3(0.03455942, 0.00228226, 0.17335873);
|
|
|
+ xyz += R[7] * vec3(0.03722379, 0.00420733, 0.19620658);
|
|
|
+ xyz += R[8] * vec3(0.03241838, 0.00668880, 0.18608237);
|
|
|
+ xyz += R[9] * vec3(0.02123321, 0.00988840, 0.13995048);
|
|
|
+ xyz += R[10] * vec3(0.01049099, 0.01524945, 0.08917453);
|
|
|
+ xyz += R[11] * vec3(0.00329584, 0.02141831, 0.04789621);
|
|
|
+ xyz += R[12] * vec3(0.00050704, 0.03342293, 0.02814563);
|
|
|
+ xyz += R[13] * vec3(0.00094867, 0.05131001, 0.01613766);
|
|
|
+ xyz += R[14] * vec3(0.00627372, 0.07040208, 0.00775910);
|
|
|
+ xyz += R[15] * vec3(0.01686462, 0.08783871, 0.00429615);
|
|
|
+ xyz += R[16] * vec3(0.02868965, 0.09424905, 0.00200551);
|
|
|
+ xyz += R[17] * vec3(0.04267481, 0.09795667, 0.00086147);
|
|
|
+ xyz += R[18] * vec3(0.05625475, 0.09415219, 0.00036904);
|
|
|
+ xyz += R[19] * vec3(0.06947040, 0.08678102, 0.00019143);
|
|
|
+ xyz += R[20] * vec3(0.08305315, 0.07885653, 0.00014956);
|
|
|
+ xyz += R[21] * vec3(0.08612610, 0.06352670, 0.00009231);
|
|
|
+ xyz += R[22] * vec3(0.09046614, 0.05374142, 0.00006813);
|
|
|
+ xyz += R[23] * vec3(0.08500387, 0.04264606, 0.00002883);
|
|
|
+ xyz += R[24] * vec3(0.07090667, 0.03161735, 0.00001577);
|
|
|
+ xyz += R[25] * vec3(0.05062889, 0.02088521, 0.00000394);
|
|
|
+ xyz += R[26] * vec3(0.03547396, 0.01386011, 0.00000158);
|
|
|
+ xyz += R[27] * vec3(0.02146821, 0.00810264, 0.00000000);
|
|
|
+ xyz += R[28] * vec3(0.01251646, 0.00463010, 0.00000000);
|
|
|
+ xyz += R[29] * vec3(0.00680458, 0.00249138, 0.00000000);
|
|
|
+ xyz += R[30] * vec3(0.00346457, 0.00125930, 0.00000000);
|
|
|
+ xyz += R[31] * vec3(0.00149761, 0.00054165, 0.00000000);
|
|
|
+ xyz += R[32] * vec3(0.00076970, 0.00027795, 0.00000000);
|
|
|
+ xyz += R[33] * vec3(0.00040737, 0.00014711, 0.00000000);
|
|
|
+ xyz += R[34] * vec3(0.00016901, 0.00006103, 0.00000000);
|
|
|
+ xyz += R[35] * vec3(0.00009522, 0.00003439, 0.00000000);
|
|
|
+ xyz += R[36] * vec3(0.00004903, 0.00001771, 0.00000000);
|
|
|
+ xyz += R[37] * vec3(0.00002000, 0.00000722, 0.00000000);
|
|
|
+
|
|
|
+ return xyz;
|
|
|
+}
|
|
|
+
|
|
|
+float spectral_linear_to_concentration(float l1, float l2, float t) {
|
|
|
+ float t1 = l1 * pow(1.0 - t, 2.0);
|
|
|
+ float t2 = l2 * pow(t, 2.0);
|
|
|
+
|
|
|
+ return t2 / (t1 + t2);
|
|
|
+}
|
|
|
+
|
|
|
+vec3 spectral_mix(vec3 color1, vec3 color2, float t) {
|
|
|
+ vec3 lrgb1 = spectral_srgb_to_linear(color1);
|
|
|
+ vec3 lrgb2 = spectral_srgb_to_linear(color2);
|
|
|
+
|
|
|
+ float R1[SPECTRAL_SIZE];
|
|
|
+ float R2[SPECTRAL_SIZE];
|
|
|
+
|
|
|
+ spectral_linear_to_reflectance(lrgb1, R1);
|
|
|
+ spectral_linear_to_reflectance(lrgb2, R2);
|
|
|
+
|
|
|
+ float l1 = spectral_reflectance_to_xyz(R1)[1];
|
|
|
+ float l2 = spectral_reflectance_to_xyz(R2)[1];
|
|
|
+
|
|
|
+ t = spectral_linear_to_concentration(l1, l2, t);
|
|
|
+
|
|
|
+ float R[SPECTRAL_SIZE];
|
|
|
+
|
|
|
+ for (int i = 0; i < SPECTRAL_SIZE; i++) {
|
|
|
+ float KS = (1.0 - t) * (pow(1.0 - R1[i], 2.0) / (2.0 * R1[i])) + t * (pow(1.0 - R2[i], 2.0) / (2.0 * R2[i]));
|
|
|
+ float KM = 1.0 + KS - sqrt(pow(KS, 2.0) + 2.0 * KS);
|
|
|
+
|
|
|
+ //Saunderson correction
|
|
|
+ // let S = ((1.0 - K1) * (1.0 - K2) * KM) / (1.0 - K2 * KM);
|
|
|
+
|
|
|
+ R[i] = KM;
|
|
|
+ }
|
|
|
+
|
|
|
+ return spectral_xyz_to_srgb(spectral_reflectance_to_xyz(R));
|
|
|
+}
|
|
|
+
|
|
|
+vec4 spectral_mix(vec4 color1, vec4 color2, float t) {
|
|
|
+ return vec4(spectral_mix(color1.rgb, color2.rgb, t), mix(color1.a, color2.a, t));
|
|
|
+}
|
|
|
+
|
|
|
+#endif
|
|
|
+ `;
|
|
|
+ }
|
|
|
+
|
|
|
+ exports.RGB = RGB;
|
|
|
+ exports.RGBA = RGBA;
|
|
|
+ exports.HEX = HEX;
|
|
|
+ exports.HEXA = HEXA;
|
|
|
+
|
|
|
+ exports.mix = mix;
|
|
|
+ exports.palette = palette;
|
|
|
+ exports.glsl_color = glsl_color;
|
|
|
+ exports.glsl = glsl;
|
|
|
+});
|